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FORWARD

In conventional quantum well lasers, carriers are injected into the quantum wells with quite
high energies. We have invented a new quantum well laser in which electrons are injected into the
quantum well ground state through tunneling. The tunneling injection lasers are shown to have
negligible gain compression, superior high temperature performance, lower Auger recombination
and wavelength chirp, and better modulation characteristics when compared to conventional lasers.
The underlying physical principles behind the superior performance are also explored and
calculations and measurements of relaxation times in quantum wells have been made.
Experimental results have been obtained for lasers made with a variety of material systems,
InGaAs/GaAs/AlGaAs, InGaAs/GaAs/InGaAsP, and InGaAs/InGaAsP/InP, for different
applications. Both single quantum well and multiple quantum well tunneling injection lasers are
demonstrated. These lasers outperform any other semiconductor laser in terms of modulation
bandwidth and gain compression. f.3gB ~ 50 GHz and f.3gp(max)=98 GHz have been measured.
This device is now being investigated on a worldwide basis, and the tunneling mechanism has also

been incorporated in VCSELs.
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1. INTRODUCTION

Over the last decade quantum well lasers have become ubiquitous in the area of
optical communications [1}. The quasi-2-dimensional world provided by the quantum
wells allows modification of the carrier density of states leading to lower threshold
current density. As a result, lattice matched and strained quantum well lasers can
now be fabricated with sub-milliamp threshold current [2]. Recently, however, some
attention has been focussed on potentially negative aspects of sub-3-dimensional sys-
tems. These negative aspects have bearing on the high speed performance of the
lasers as well as the temperature dependence of the threshold current. The aspects
under discussion arise from the carrier thermalization times in sub-3-dimensional sys-
tems [3], carrier loss due to injection over the barriers in quantum well lasers [4], and
the related issues of carrier distribution being at non-quasi-equilibrium resulting in
non-linear gain: and hot carrier effects [5].

To understand the issues raised above we show in Fig. 1 the carrier injection
process in a conventional separate confinement heterostructure (SCH) quantum well
lasers. Electrons and holes are injected from the cladding layer regions into the .
quantum well. Since the cladding layers are made from larger bandgap materials
(this region mﬁst have a smaller refractive index), the carriers are injected into the
active region with energies of the order of several hundred millielectron volts. For
efficient laser performance the carriers should be able to enter the quantum well and
reach thermal equilibrium with the quasi-Fermi level. This requires the carriers to
emit phonons (optical phonons) at a very rapid rate, and also avoid being swept over
the barrier into the opposite cladding layer as shown in Fig. 1. Carriers that cross
the active region are lost as far as lasing is concerned and are a significant source of
poor temperature performance of lasers. If carriers entering the quantum well region
do not thermalize, the carrier distribution will become hot, resulting in two negative
effects. The hot carrier distribution will provide lower gain at the lasing energy which

arises from the ground states of the quantum well. Also, the Auger recombination will




be enhanced. These effects will become of greater importance as the laser is pumped
harder to achieve higher modulation bandwidths. As the laser is pumped harder, the
electron-hole recombination time determined by stimulated emission becomes very
short (as small as 20 ps). If injected carriers cannot lose energy and thermalize in
these times, the carrier distribution will become even hotter. This leads to non-linear
gain and increased Auger recombination.

In view of the importance of the carrier thermalization times, it is useful to review
these times in bulk and quantum confined systems. We will focus on the electron
relaxation since the hole relaxation is very fast due to the high scattering rates for
holes. It has been shown that electron thermalization times are of the order of one
picosecond in bulk direct gap semiconductors. For quantum wells the times increase
to ~ 5 — 15 ps depending upon the well size and the carrier density [6]. In quantum
wires the times can be as long as 30 ps [7]. One can see that quantum systems which
offer superior density of states for low threshold lasing suffer from long relaxation
times.

Recently, we have been developing a new approach for carrier injection in quantum
well lasers to bypass the carrier thermalization problem and yet exploit the two-
dimensional density of states. The approach is based on the injection of electrons into
the quantum well by tunneling through a resonant tunneling barrier [8]. The approach
shown schematically in Fig. 2 is based on the following two steps: i) electrons coming
from the cladding layer are first thermalized in a wide (3-dimensional) region before
reaching the quantum well; ii) the thermalized “cold” electrons now enter the quantum
well region through the resonant tunneling barrier as shown in Fig. 2. The injection
of holes is done in a manner similar to that in conventional lasers. This is because
as noted above there is no problem in hole thermalization process in quantum wells.
The approach outlined above has several expected benefits which we outline here:

i) Since electrons are injected into the quantum well as “cold” electrons the elec-

tron gas does not suffer from hot carrier effects discussed earlier;




i) The injection mechanism also ensures that very few electrons will go over the
active region into the opposite cladding layer;

iii) Gain compression effects will be minimized since the majority of electrons are
injected close to the lasing energy.

iv) Since the tunneling process produces an initial carrier distribution which has
an energy spread much smaller than the thermal energy kT at room temperature, it
is possible that the spectral purity will improve. Also the Auger recombination may
be reduced for such a sharp electron distribution. Of course, even if the electrons
are injected with a very narrow energy spread, the electron distribution will broaden

from scattering once the electrons are in the quantum well.

2. BASIS FOR THE TUNNELING LASER: CARRIER CAPTURE AND
:RELAXATION IN NARROW QUANTUM WELLS

It has been recognized that the intrinsic limit on the modulation frequency of
a semiconductor laser is strongly dependent on the carrier relaxation process [6, 9].
In studying such effects, not only should diffusion effects [10] be included, but it is
equally important to consider quantum capture times and the scattering effects in
the confinement layer. Such a study undertaken by us is described in this section.

In our theoretical study, for which a Monte Carlo approach was adopted, it was
assumed that the relaxation processes in the éonduction band will be much slower
than those in the valence band, and will therefore dominate the device response [3,
11, 12]. Furthermore, because of the nonparabolicities and band-mixing effects in
the valence band structure, a study of the relaxation process in the conduction band
is a better starting point for a theoretical analysis of carrier equilibration. Hence,
only electron transport is considered. The procedure for our calculations is briefly
outlined. The eigenfunctions for electrons in the confined system are calculated from
which the bulk and confined states are obtained. The appropriate scattering processes

in the subband of the quantum well are calculated. In our Monte Carlo method, a
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charge distribution is injected in the 3D region (inner cladding layer) with a thermal

distribution and the temporal response of the injected charge is observed. The carrier
transport in the 3D SCH region and the 2D well region are _modeled separately.
During carrier relaxation in the quasi-two-dimensional environment of the quantum
well, the carriers experience both intrasubband and intersubband scattering with the
 lattice vibrations. For the case of an unintentionally doped well region at low carrier
concentrations, the dominant scattering mechanisms are polar optical phonon and
acoustic phonon scattering. Using the Fermi Golden Rule, the intersubband optical
phonon scattering rates are given by [13, 14]

? o Hmn
SPOP = g?“:— [é - 21-] (Nq + % =2 %) o fg? §(E(ky) — E(ks) % fiw,)dkz (1)

where the Bose-Einstein distribution gives the phonon occupation number

1

exp (:T‘f’%) -1

N, = (2)

Here, fiw is the polar optical phonon energy, taken as 35.36 meV, and € = 10.92 and
€, = 12.90 are the optical and static dielectric constants, respectively. The initial and
final-state wavevectors of the electron are k; and ks, while @ = %(k; —kz) and ¢ are
the phonon wavevector components parallel and perpendicular to the well layer. For
simplicity, carrier screening effects [15] are included in (1) with @2 = enfekpT as
the Debye screening wavevector. Hmn(Q) are the multisubband coupling coefficients.
Calculation of the values of Hpmn(Q) in 2 quantum well by us [16] has clearly indi-
cated that transitions between discrete electron levels in a quantum confined system
are more difficult than in a bulk semiconductor due to the energy and momentum
conservation requirements.

For our model, the polar optiéal phonon absorption scattering rate is also calcu-
lated and found to be about four times lower than the optical phonon emission rate.
For completeness, ;e have calculated the acoustic phonon scattering rates as in Refs.

13 and 14, although it is about 100 times smaller than the optical phonon rates.




Electron-electron interactions become significant when the carrier density is mod-
erately high (n > 101 cm™®) [17]. The total screened electron-electron scattering
rates for the 3D region are found using the Fermi Golden Rule [18, 19]. For the 2D
region, the total electron-electron scattering rates are derived by summing over all
final states the transition probability of two electrons in subbands ¢ and j scattering
into subbands m and n, respectively, after a collision [20]. Only dominant scattering
processes are considered, which are pure intrasubband scattering where i = m,j = n,
and i # j. We have implemented the 9D and 3D electron-electron scattering mecha-
pisms in our model using a rejection method [21].

Figure 3(a) shows the temporal variation of the ground state occupancy when
an ensemble of carriers are injected at an energy 0.15 eV above the quantum well
in an SCH structure. Figure 3(b) depicts similar data for carriers injected into a
linearly graded refractive index SCH (L-GRINSCH) structure. Again multiple iﬁ—
jection densities have been chosen to simulate true injection conditions in a laser.
Experimentally similar capture times have been measured by us and others 3, 16, 22]
using time-resolved photoluminescence measurements and pump-probe techniques. It
is therefore amply evident that the electron relaxation time to the ground state in
quantum wells can be as high as 20 ps, depending on size. As stated earlier, the
primary reason for this is that transitions between discrete levels in a quantum con-
fined system are more difficult than in bulk semiconductors due to the energy and
momentum conservation requirements.

Since the thermalization time can become longer than the stimulated emission
time, for large injection currents the carrier distribution will no longer remain quasi-
Fermi and instead becomes a hot carrier distribution. In fact, in a laser operated
beyond threshold, the carrier temperature can be ~ 40° higher than the lattice tem-

perature.
3. THE TUNNELING CONCEPT AND ITS BENEFITS

If “cold” electrons are introduced into the lasing subband of the active quantum




well at or near the Fermi level by tunneling, as shown in Fig. 2, then the hot carrier
effects discussed in the previous section are minimized. Electrons are injected at
energies close to the lasing energy at a rate faster than the stimulated emission rate
and the electron distribution remains quasi-Fermi even at large drive currents. By
using a time-resolved pump-probe technique, we have measured the tunneling time
to be 1 — 2 ps in a laser structure identical to that shown in Fig. 2 [22]. Lutz et
al [23] have also verified the tunneling mechanism in a tunneling injection laser by
observing the expected hysteresis in both the current-voltage and the light-current
characteristics of a GaAs-based tunneling injection (TI) laser.

Figure 4(a) shows the heterostructure of an GaAs-based TI laser designed for
emission at 0.98 pm and Fig. 4(b) shows the design of a 1.55 pm InP-based laser.
The structures were grown by molecular beam epitaxy (MBE) and metal-organic
vapor phase epitaxy (MOVPE), respectively. The optical mode profile of the 1.55 ;;m
laser of Fig. 4(b) is shown in Fig. 5. It is evident that there is very little asymmetry
introduced due to the small perturbation of the active region and this is important
for high-performance }devices.

Broad-area and single-mode lasers are made with the same processing techniques
as for SCH lasers. The standard photolithograhy and lift-off techniques followed by
wet and dry chemical etching are used. Regrowth is used for buried-heterostructure
index-guided devices. Ridge waveguide lasers are fabricated with a 3 ym wide stripe
in a coplanar ground-signal-ground contact geometry, suitable for on-wafer microwave
measurements.

It is generally believed that spectral hole burning and carrier heating are the two
main causes of gain suppression in lasers. We have studied gain-compression effects
in a GaAs-based tunneling injection laser by observing the spontaneous emission
spectra during lasing as a function of bias current. A broad-area laser, 125 ym wide
and 400 pm long is specially made with a window in the top p-ohmic contact through

which the spontaneous emission exits. The laser is driven at different injection levels




and the spontaneous emission is collected and analyzed by a 0.75 m SPEX scanning
spectrometer. The emerging light is detected with a Ge detector. The experimental
arrangement is schematically shown in Fig. 6(a) and the measured data are shown
in Fig. 6(b). The intensity of the spontaneous emission increases continuously at
the lasing wavelength with increase of injection current, indicating absence of gain
compression at the lasing wavelength. The oscillations observed in the spectra are
due to spurious Fabry-Perot resonances, possibly between the n-side electrode and
the various layers of the heterostructures. If gain compression effects are severe,
then little or no increase in the spontaneous emission intensity would be expected
at the lasing wavelength, as recently reported by Girardin et al [24] for a 1.5 uym
laser. The relative contributions of spectral hole burning and carrier heating in a
semiconductor laser are strongly dependent on the laser type and material in the
active region [25-28]. Theoretical studies indicate that strained quantum well lasers
exhibit enhanced carrier heating effects due to the extremely low threshold carrier
density [5]. Carrier heating effects are manifested in the spontaneous emission spectra
as a gain suppression at wavelengths below the gain maximum and closer to the peak
of the spontaneous emission spectrum [24, 29]. Although the device used in this
study is a Ing2GagsAs/GaAs strained quantum well laser, it has only one lasing well
and I, is quite high. Therefore, n, is expected to be high. It is difficult, therefore,
to distinguish spectral hole burning and carrier heating effects and it is probably
accurate to state that both effects contribute to a reduction of gain compression in

the TI laser in an indistinguishable manner.

4. MODULATION BANDWIDTH AND DYNAMIC LINEWIDTH (CHIRP) OF
SQW TUNNELING INJECTION LASERS

It is well recognized [1] that gain suppression is one of the most limiting effects

in the dynamic behavior of a laser, in particular the modulation bandwidth and



wavelength chirp of directly modulated lasers. The reduction of gain compression
~achieved in the tunneling injection lasers promise higher bandwidth and lower chirp.
At the same time it is expected that the temperature dependence of Jy will be
reduced. We have verified these in ~ 0.98 um lasers.

Measurements were made on a 3pm X 200pm ridge waveguide laser grown by
MBE and fabricated on semi-insulating GaAs substrate [30]. The facets are uncoated.
From the measured L-I characteristics the values of I, cavity loss, slope efficiency
and internal quantum efficiency are obtained to be 3 —4 mA, 13 cm™?, 0.31 mW/mA
per facet, and 0.56, respectively. The differential gain of these devices varied in the
range (5—6) X 107 cm?, which is a factor of 2 higher than the best value for a SQW-
SCH laser [31] and comparable to the best MQW-SCH devices, even with 35% In in
the active wells (remember that our devices have 20% In). The internal modulation
bandwidth of the lasers were measured with help of a sweep oscillator, a New Focﬁs
high-speed (40 GHz) detector and a HP spectrum analyzer. The devices were placed
on Cu heatsinks without using In and were not bonded to carriers. High-frequency
probes and a bias-T were used to access the devices on wafer and to provide the DC
bias, together with the microwave input. The modulation response data are shown
in Fig. 7 for an output power of 15 mW. The -3 dB bandwidth is 12.5 GHz, which is
higher than any value obtained for a SQW-SCH ridge waveguide device.

The temperature dependence of the threshold current was measured in the range
208 — 343 K. By fitting the data with the phenomenological expression, I =
ILezp(T/T,), an average T, of 170 K is obtained for several devices. A very high value
of 219 K was obtained in one device. These values are considerably higher than those
in SCH devices, where T, is usually ~ 125 K.

We have measured the dynamic linewidth (wavelength chirp) of a GaAs-based 0.91
pm TI laser and have compared them with SCH and DFB lasers emitting at 1.07 and
1.3 pm respectively. The cavity lengths and threshold currents of the SCH, TI and
DFB lasers are 300, 350 and 400 pm, and 11.8, 11.5 and 11.3 m4, respectively. Chirp
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was measurea up to modulation frequencies of 20 GHz at a fixed value of bias current
(20 mA) and peak-to-peak modulation current (14 mA). The chirp was estimated
to be the full width at half maximum of the dominant lasing longitudinal 4mode
measured by a low-speed photodiode from a 0.75 m scanning spectrometer. The
Fabry-Perot mode shifting due to device heating was minimized by using a pulsed
bias (1 pm pulse width and 5 KHz repetition rate). The measured dynamic linewidth
of the three lasers are shown in Fig. 8. Two characteristics are immediately evident.
First, the measmed linewidths are not sensitive to the modulation frequency wm, as
expected, in this frequency ré.nge. This observation has been made by other authors
[32]. Second, the chirp in the TI laser is lower than that in the SCH laser, and almost
comparable to that of the DFB laser, whose dynamic linewidths are characteristically
low due to the mode pulling mechanism. We attribute this significant reduction of
chirp in the TI laser to the reduction of hot carriers and the gain compression factor

e [33].

5. InP-BASED 1.55um TUNNELING INJECTION LASERS

Auger recombination, which is a three-carrier non-radiative recombination process,
is one of the more serious drawbacks of long wavelength InGaAsP/InP lasers. The
presence of hot carriers enhances the rate of the conduction-heavy hole-heavy hole-
split off band (CHHS) Auger process, given by Rauger = C.np?, where C, is the
Auger coefficient. We have made extensive measurements of the Auger recombination
coefficients in the TT lasers and compared them with 1.55 um MQW-SCH lasers [34].
A typical InP-based TI laser heterostructure was shown in Fig. 4(b). The details
of the measurements and analysis of data are not repeated here, but only the final
results. Measurements were made for several cavity lengths in each laser. Compared
to an average value of C, = 1 x 10~%" cm®/s for the SCH devices (averaged over

the cavity lengths), an average value of C, = 8 x 10! cm®/s was obtained for the

11




T1 lasers. This represents a reduction of over 3 orders of magnitude in the value
of C,. Furthermore, considering the fact that Auger recombination in MQW lasers
is generz‘a.lly smaller than in SQW devices, due to a lower hot carrier density in the
former, this result is all the more significant.

Typical measured temperature-dependent variation of the L-I characteristics of
these lasers in the range 283 —338 K are depicted in Fig. 9. From such measurements
an average value of T, = 54 K and a high value of T, = 70 K are derived. Even the
average value is ~ 1.5 times typical values of T, obtained in 1.55 pm MQW-SCH lasers.
Recently Fukushima et al [35] have measured a value of T, = 50 — 60 K in a 1.55 um
laser in which a MQW barrier is introduced in the inner cladding layer. The effect of
this barrier is to prevent carriers from escaping the MQW region and optimize carrier
capture. Zah et al [36] have measured T, = 82 K by incorporating higher energy
barriers in the MQW to prevent carrier leakage and improve confinement. It must b.e
remembered that several factors contribute to low T,. These are hot carriers, carrier
leakage, intervalence band absorption and heterointerface recombination. In the TI
laser, with the present design, the hot carrier population is minimized. We believe

that with more optimal design, T, can be enhanced further.

6. OTHER MATERIAL SYSTEMS

The use of Ing.49Gag.s1 P lattice matched to GaAs (hereafter referred to as InGaP)
with a bandgap of ~ 1.89 eV as the cladding layer of InGaAs/GaAs 0.98 pm lasers is
becoming increasingly prevalent for high power pump lasers in optical communication.
The use of this material provides several advantages. It has better thermal conductiv-
ity than the typical Alo.4GaosAs used in GaAs-based lasers [37]. The GaAs/InGaP
heterointerface has an extremely low interface recombination velocity of 1.5 cm/s
[38]. The gradual degradation of InGaAs/ GaAs/AlGaAs lasers, generally attributed
to Al oxidation induced facet degradation, will be eliminated and will make these

lasers suitable for reliable high-power operation. The existence of reliable selective
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etchant between GaAs and InGaP makes the fabrication of stripe geometry lasers
simpler. However, there may be a couple of disadvantages. The large index difference
between GaAs and InGaP can cause wide transverse beam divergence. Also, in spite
of AE. < AE, [39, 40] for the GaAs/InGaP heterojunction, the value of AE, is still
~ 0.2 eV, which may inhibit carrier injection across an abrupt heterointerface. The
use of graded InGaAsP layers, or the tunneling injection structure will alleviate this
problem.

In view of what has been stated above, we have made and characterized the first
InGaAs/GaAs/InGaP TI lasers. The SQW-TI heterostructure grown by MOVPE on
semi-insulating GaAs substrates oriented 5° off (001) toward [110] is shown in Fig.
10. It is useful to note that InGaAsP quaternary layer (E, = 1.6 eV) lattice matched
to GaAs on the p-side of the active region helps in the efficient injection of holes from
the p-contact. The tunneling mechanism efficiently injecfs electrons into the lasiﬁg
subband of the single quantum well gain medium. The L-I characteristics of a 200
pm long laser are shown in Fig. 11 with the spectral output shown as an inset. The
value of I, is 15 mA and the peak of the emission is at 0.89 pum, noting that the .
active well is made of IngGao.9As. The modulation response of the laser is shown in
Fig. 12, from which fasg = 9 GHz at only 60 mA of injection current. This is a high
value considering that the active material is Ing1Gag.9As and the device has only one
lasing quantum well. A direct comparison is not possible since we are not aware of
any modulation response data from SQW lasers made with the InGaAs/GaAs /InGaP
structure. It compares favorably with our bandwidth of 12.5 GHz mentioned in Sec. 4
and the published data with InGaAs/GaAs/AlGaAs lasers [41-43]. It is expected that
further optimization of the structure and the use of Ino.35GaoesAs/InGaAsP MQW

will lead to much improved performance.

7. MULTIQUANTUM WELL TUNNELING INJECTION LASERS

For a given value of modal gain, the differential gain increases as the number of
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quantum wells increases because the carrier density associated with a single quantum
well decreases. Improved high frequency performance is achieved in MQW lasers
due to the differential gain enhancement [44]. Such a device would also enable the
extension of the tunneling concept to a MQW laser. Figure 13(a) shows the schematic
heterostructure of the GaAs-based multiple quantum well tunneling injection laser
structure grown by MBE. The structure was grown on (100) semi-insulating GaAs
substrate. The cladding layers were grown at a substrate temperature of 680 °C.
The GaAs and InGaAs quantum wells were grown at 540 °C. It is important to note
that the structure is not optimized in terms of number of quantum wells and other
parameters.

Figure 13(b) shows the energy band diagram of the MQW tunneling injection
laser structure under an applied forward bias, which was obtained by solving the
time-independent Schroedinger equation. The dashed lines are the wave functions of
the first five states. It can be seen that the wave functions of the first four states are
localized in the four quantum wells and the wave function of the fifth state, which is
ground state in the cladding region, is localized in the injection layer (inner cladding .
layer on the n-side). The widths of the quantum wells and the thickness of the GaAs
barrier are optimized so that each of the four wave functions in the quantum wells
is not localized in an individual well but distributed in the multiple quantum wells
and the energies of these four states are very close to each other. Carriers injected
into the active region by optical phonon assisted tunneling are uniformly distributed
in the multiple quantum wells, resulting in a high differential gain. The calculated
tunneling energy is about 72 meV above the lasing subband in the MQW. The ex-
act mechanism of transport is under investigation using time-resolved femtosecond
differential transmission spectroscopy.

The 3 pm wide ridge lasers were cleaved to a length of 200 pm and mounted
onto copper heatsinks. The lasers were pulse biased with 1 us pulses having 1% duty

cycle. On-wafer measurements were made at heatsink temperatures of 25 °C. The
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light-current ‘characteristics of the MQW tunneling injection laser are shown in Fig.
14. The typical threshold current is 20 mA. This high value is due to the non-optimal
quality of the AlGaAs cladding layers. The slope efficiency is 0.34 mW/mA per
uncoated facet. The peak of the laser emission is at ~ 0.98 pm, which confirms lasing
from the MQW region. Fig. 15 shows the modulation frequency response of the
MQW tunneling injection laser for increa;sing drive currents. The measurement was
made up to 21 GHz, which is limited by the amplifier and the modulation response
is still above 0 dB. The extrapolated -3 dB modulation bandwidth at the highest
drive current of 190 mA is ~ 30 GHz, which is much larger than the best modulation
bandwidth of 12.5 GHz obtained from the SQW tunneling injection laser. From the
plot of damping factor as a function of resonance frequency squared, a K-factor of
0.27 ns' was extracted, implying that a maximum -3dB modulation bandwidth of
33 GHz is achievable if the device is not limited by damping, transport, or deviée
heating. Furthermore, from the plot of resonance frequency versus the square root of
the optical output power per facet, a D-factor of 2.3 GHz/mW?'/? is obtained. For
the purpose of comparison, we also fabricated conventional Ing2GagsAs/GaAs MQW
SCH lasers with four 50 A wells. There is no tunneling barrier in the structure and
the p-side inﬁer cladding layer is 0.1 pm-thick undoped GaAs. The other layers are
the same as in Fig. 13(a). The maximum modulation bandwidth of this SCH laser
is 16 GHz. It is therefore evident that enhanced high frequency performance can be
achieved from the MQW tunneling injection laser.

As stated earlier, our structure is not optimized to achieve the highest possible
bandwidth and several parameters can be modified. Higher differential gain can be
obtained by increasing the-number of quantum wells. Thin inner cladding layers are
employed in a laser structure to reduce the influence of carrier transport across the
SCH region on modulation performance [42]. Modulation doped MQW lasers are
generally used to enhance the differential gain by controlling the quasi-Fermi levels in

the band structure [45]. A modulation bandwidth of 37 GHz was reported from p-type
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modulation doped InGaAs/GaAs MQW lasers [46]. We believe that the incorporation
of these features into the tunneling MQW laser structure will allow the achievement
of modulation bandwidth higher than 40 GHz in the TI laser. Furthermore, with
the use of the buried-heterostructure design to obtain a true index-guided device
with lower threshold current and with proper mounting and heatsinking, GaAs-based
MQW tunneling injection lasers have the potential of delivering high output power

and demonstrating modulation responses with f-348(maz) ~ 60 — 80 GHz.

8. ULTRA-HIGH BANDWIDTH 0.98 um
TUNNELING INJECTION LASERS

Figure 16 shows the schematic cross section of the MQW TI laser structure. We designed
devices with 4-QW and 6-QW gain regions. For the 4-QW structure we have grown two samples,
one with an undoped active region and the other with a C-modulation doped active region. The
device structure consists of a 0.5 gm-thick n+-GaAs buffer, a 1pm-thick n-Aly ¢Gag 4As (n =35 x
1017 cm-3) outer cladding layer, a 0.1 pm-thick undoped GaAs n-side inner cladding or electron
injection layer, a 30 A undoped AlAs tﬁnneling bé.rrier, the active region consisting of four
undoped Ing ,Gag gAs quantum wells with different well widths (64, 54, 50 and 48 Awith 70A
GaAs barriers in between), a 250 A-thick undoped Aly ;Gag 9As p-side inner cladding layer, a
1pm-thick p-Alg ¢Gag 4As (p = 5 x 1017 cm3) outer cladding layer and finally a 0.2 pm-thick
p+-GaAs (3 x 1019 cm-3) top contact layer. The QW barrier is GaAs in the 4-QW structure and
GaAs goPg og in the 6-QW structure to compensate the strain in the active region. The structure
was grown on (001)‘ GaAs substrate by metal-organic vapor phase epitaxy (MOVPE). The
active region was grown at 600°C and the Alj (Gag 4As layers were grown at 775°C. Figure 17
shows the energy. band diagram and the electron wave functions of the MQW tunneling injection
laser structure under a forward bias, which was obtained by solving the time-independent
Schrodinger equation. The dashed lines are the wave functions of the first five states. It can be

seen that the wave functions of the first four states are localized in the four quantum wells and
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the wave function of the fifth state, which is the ground state in the cladding layer, is localized in
the injection layer (inner cladding layer on the n-side). The widths of the quantum wells and the
thickness of the GaAs barrier are optimized so that each of the four wave functions in the
quantum wells is not localized in an individual well but distributed in the multiple quantum wells
and the energies of these four states are very close to each other. The coupling of the QWs is
important for obtaining a uniform carrier distribution in the MQW structure. The time for -
electrons to be uniformly distributed in the MQWs is the tunneling time of electrons through the
GaAs QW barrier, which is on the order of (b/(2% AE)) [47].h is the Planck constant and AE is
the energy difference between the four states in the MQWs, which is 11 meV in the structure.
Since the tunneling energy is designed to be ~ 72 meV above the lasing subband, we believe that
carriers thermalize very rapidly by a combination of phonon-assisted tunneling and carrier-carrier
scattering. The tunneling time as discussed above is about 2 ps. The details of electron traﬁsport
and thermalization in these structures are under investigation. Nevertheless, as a result of the fast '
tunneling and scattering prdcess, compared in time to stimulated emission times, small carrier
heating and a high differential gain are expected.

ground-signal-ground contact geometry [48]. The p-contact and n-contact metals were Ti/Pt/Au
and Ni/Ge/AwTi/Au, respectively. The lasers were cleaved to a length of 200 - 800 pm and
mounted onto Au-coated copper heatsinks. The facets were uncoated. The measurement was

made at room temperature under both CW.and pulsed bias conditions. Figure18 shows the light-

current characteristics of the MQW tunneling injection laser with 4-quantum wells. The threshold
current is 3 mA for a cavity length of 200 um. The slope efficiency is 0.33 mW/mA and the
differential quantum efficiency is 0.52. From the dependence of the inverse differential qﬁantum
efficiency on cavity length, we obtained the internal quantum efficiency 1; = 0.5 6 and the internal
loss a; = 5.2 cm-!. The transparency current density, determined from a plot of the threshold

current density against inverse cavity length, is only 167 A/cm?. The peak of the laser emission is
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at about 0.98 jm, which confirms lasing from the Inj ,Gag gAs/GaAs MQW region. The
emission peak does not shift sigm'ﬁcantly with C-doping. Singlé frequency operation has been
achieved at currents from 25-30 mA. The characteristic temperature T is 178 K, which was

obtained in the temperature range between 20° and 80° C.

The small signal modulation characteristics of 200 pm long lasers were measured under CW
and pulsed bias conditions with a 50 GHz HP8350B sweep oscillator, a bias-T, a 40 GHz
MITEQ amplifier and a 40 GHz New Focus 1011 detector and an HP8562 spectrum analyser.
The power of the microwave signal modulating the laser was set between -10 dBmi and 0 dBm.
The measured response was calibrated for the losses due to cables, connectors, bias network, and
DC blocking capacitor. Figure 19(a) shows the modulation frequency response of undoped MQW
tunneling injection lasers under 'CW operation. The maximum modulation bandwidth was
obtained at 70 mA. The measurement was made up to 40 GHz, which is limited by the ampliﬁer
and the spectrum analyser used in the setup and the modulation response at 40 GHz is about 0
dB. The resonance frequency fr at 70 mA is 23.5 GHz. The -3dB modulation bandwidth obtained
by the curve fitting is 43 GHz. Under pulsed bias condition, the resonance frequency is 26 GHz
and the modulation response at 40 GHz is about 6 dB, shown in Figure 19(b). The extrapolated
-3dB modulation bandwidth is 48 GHz. This is the highest modulation ‘ba‘ndwidth reported to
date for any semicondﬁcior laser.

The measured frequency response of the laser was fitted to the standard small signal

modulation response to extract ‘modulation -parameters, such as the resonance frequency f; and
the damping rate y as a function of the bias current [ 49,50]. The resonance frequency is
proportional to square root of the output power. From the slope of the linear dependence shown
in Figure 20(a) we obtained the value of the figure of merit D = 5.06 GH/(mW)!/2 and the
differential gain dg/dn = 1.86x10-!3 cm?. The damping rate 7 varies linearly with f, squared, and
the proportionality constant is the K-factor [20]: K = 4n2 (Tph * €/(vg dg/dn)), where Ty, is the

photon life time, € is the gain compression coefficient , v is the group velocity of light and dg/dn




is the differential gain. The maximum possible intrinsic modulation bandwidth is determined
solely by the K-factor, f 3 4p1.4 = 23/7/7£/K. From a plot of the damping rate against the resonance
frequency squared, shown in Figure20(b), the K-factor was obtained to be 0.116 ns under CW
bias condition, representing a maximum intrinsic bandwidth of 76 GHz. Under pulsed bias K is
0.090 ns and f 34, = 98 GHz. These are the highést maximum intrinsic modulation bandwidth
reported to date for semiconductor lasers. From the values of K-factor and differential gain the
gain compression coefficient € is calculated to be 1.5x10}7 cm?3 for pulsed bias and 1.7x1017 ¢m3
for CW operation. The gain compression is minimized in tunneling injection lasers. For the C-
doped MQW TI lasers, the threshold current is 12 mA. The internal quantum efficiency 1; and
the internal loss ¢ are 0.80 and 19 cml, respectively. We measured f ;55 =30 GHz at I=70
mA under CW and f,4p =34 GHz under pulsed bias. The values of the different modulation
parameters obtained by analysing the modulation response data are D = 4.64 GH/(mW)!/2, dg/dn
=1.24 x 10°15 ¢cm?, K = 0.16 ns and £ 345, = 55 GHz. It is not immediately clear why
modulation doping has not enhanced the hlgh speed characteristics of these lasers. Such behaviour
‘has been previously reported[45,51,52]. The higher value of o in these lasers, possibly arising
- from free-carrier absorption, may partly account for it, This aspect is under investigation.
Nonetheless, the intrinsic modulation bandwidth of the C-doped tunneling injection lasers also

surpasses reported results.

Carrier capture times in MQW TI lasers have also been determined from analysis of high
frequency electrical impedance measurements. We measured the frequency dependent impedance
with an HP8510 Network analyzer at various bias currents. The differential impedance 'was

determined from the measured S-parameters from the relation:

Z=Zo(1+S11)/(1-511), (1)
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where Zo is the characteristic impedance (50 ). The magnitude of the differential impedance is
analyzed with the following expressions derived from the rate equations [24]: |

\

Z(f) =R+ RqT(H)/(1+2m ft,), ) , )
Where
T@E) = (1 +j2nfry) /(1 +j 21 £ Tegp) . ?3)

below threshold. R is the parasitic series resistance, Rq is the dynamic resistance, and T, is the
electrical diode time constanf which includes the effect of space charge capacitance and capture
time. 77 is giiren by 1/7) = 1tegr+ 1/Tesc. Tegrand Tegc are the carrier life time in the well and the
carrier escape time from the well, respectively. Under conditions of negligible carrier re-emission,
where Teso >> Tegp T1 = Tegrand T(f) = 1. The measured impedance is shown in Figure 21and was
fitted to Eq.(2), using T,, Rg, and Ry as fitting parameters. The best fit was obtained with T(f) =
1, suggesting that Ty is much larger than Teﬂ‘-v The carrier life time can be calculated from the slope
(tan®) of the threshold current density (Ji,) against inverse cavity length (1/L) [25]:

tan@ = dJyy, / d(1/L) = w e In(1/R;R)/(2 dg/dn T 1), (@)

where w is the active layer thic}mess, dg/dn is the differential gain, I is the optical confinement
factor, Ry, R, are the mirror reflectivities and e is the electron charge. For undoped TI lasers, the
differential gain is 1.86 x 10-15 cm?2 and I" is 0.075. We obtained T ¢ris 0.24 ns. Since Tege >> Tegris
applicable for tunneling injection lasers, we may assume that 7. is of the order of ns. Weisser, et
al. [ 53] determined T.¢ and Teg for an otherwise comparable conventional separate confinement
heterostructure Ing 35Gg 65As/GaAs MQW laser to be 0.3 ns and 0.45 ns, respectively, at

threshold. It turns out that in the TI laser tht; carrier escape time is larger due to the presence of
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the tunneling barrie'r, which prevents carrier from escaping. The extracted value for the capture
time is about 1 ps at 50 mA [54], which agrees with the tunneling times obtained from the time
resolved DTS measurement. Recent simulations by Grupen and Heés [55], using the Minilase-II
simulator have clearly shown that in the tunneling injection laser, the electrons tunneling into the

quantum well have low initial energies and therefore minimizes carrier and phonon heating.

~ As seen in Figure 19; the small-signal modulation response is not damped at the resonance
frequency for an mjecﬁon current of 70 mA, indicating that the high frequency performance of
MQW TI-lasers is not damping limited. We believe that the frequency response of these lasers is
limited by heating effects. The value of f 445 . of 98 GHz in these devices exceeds the
predicted gain-compression limitéd bandwidths of 60 - 70 GHz in high performance quantum
well lasers made with this material system [?56].‘" Large bandwidth can only be achieved at the
expense of a very high photon density, QMCh would induce facet damage. It is therefore
imperative that, to achieve high modulation bandwidths, the laser has to be operated with a lower
photon density, the gain compression coefficient has to be reduced and the differential gain has to -

be enhanped.

9. CONCLUSION

We demonstrate the performance characteristics of tunneling injection lasers, a
new class of devices with reduced hot carrier effects. The problem of carrier injec-
tion in qua.ntufn wells is quantitatively analyzed by calculations and measurements
and the tunneling injection mechanism is invoked to alleviate the problem. Higher
bandwidths, lower chirp and smaller temperature dependence of the threshold current
in 0.98 pm SQW and MQW TI lasers, reduced Auger recombination and tempera- '
ture dependence of 1.55 pm lasers and a TI laser using the InGaAs/InGaP/GaAs
heterostructure are demonstrated. It is therefore demonstrated that the tunneling
injection of electrons can be done in a simple manner in any material system and in

any device configuration.
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The Tunneling Injection Laser was invented and developed in this project. It is most
effective in reducing hot-carrier related problems in semiconductor lasers (edge-emitting and
VCSELSs). The tunneling laser has also demonstrated record modulation bandwidths.
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